Jump to content
Reliance Jio & Reliance Mobile Discussion Forums
Sign in to follow this  
KumaarShah

Now Recharge Wirelessly

Recommended Posts

Soon, gadgets could be recharged wirelessly

[ SATURDAY, JUNE 09, 2007 01:23:13 AM]

BOSTON: Massachusetts Institute of Technology researchers made a 60-watt light bulb glow by sending it energy wirelessly — from a device 7 feet (2 meters) away — potentially heralding a future in which cell phones and other gadgets get juice without having to be plugged in.

The breakthrough, disclosed Thursday in Science Express, the online publication of the journal Science, is being called “WiTricity” by the scientists. The concept of sending power wirelessly isn’t new, but its wide-scale use has been dismissed as inefficient because electromagnetic energy generated by the charging device would radiate in all directions.

One advance was announced last fall, when MIT physics professor Marin Soljacic said he had figured out how to use specially tuned waves. The key is to get the recharging device and the gadget that needs power to resonate at the same frequency — allowing them to more efficiently exchange power.

It is similar to how an opera star can break a wine glass that happens to resonate at the same frequency as her voice. The next step was to demonstrate the principle in experiments, which is what was described in the new paper in Science. The MIT team was able to light up a 60-watt bulb that had “no physical connection” with the power-generating appliance.

“It was quite exciting,” Soljacic said. The process is “very reproducible,” he added. “We can just go to the lab and do it whenever we want.” The development raises the prospect that we might eliminate some of the clutter of cables in our ever-more electronic world. And if devices can get their power through the air, they might not need batteries and their attendant toxic chemicals.

However, the technology has a ways to go before it becomes practical.

The MIT system is about 40 to 45% efficient — meaning that most of the energy from the charging device doesn’t make it to the light bulb. Soljacic believes his system needs to get twice as efficient to be on par with charging the chemical batteries in portable gadgets.

Also, the copper coils that transmit the power are about 2 feet (0.61 meter) wide for now — too big to be feasible for, say, laptops. And the 7-foot (2-meter) range of this wireless handoff could be increased — presumably so that one charging device could automatically power all the gadgets in a room.

Soljacic believes all those improvements are within reach. The next step is to fire up more than just light bulbs, perhaps a Roomba robotic vacuum or a laptop.

Soljacic’s team stresses that the “magnetic coupling” process involved in WiTricity is safe on humans and other living things. And in the initial experiments on the light bulb, no harm came to the cell phones, electronic equipment and credit cards in the room — though more research on that is needed.

So, that means if you were to resonate with the charging device, you could get a contact-less shock??? just joking, ha ha

Share this post


Link to post
Share on other sites

Imagine if our government make it available all over the country :confuse::Decepcionado: , so no charger for Ipods, Handhelds and laptops.

Share this post


Link to post
Share on other sites

Very Interesting :P

I wonder how much 'powerful' electricity can be sent wirelesly like this ? like can we run a... say, a heavy-wattage driller thro this ?

Im gonna google for more on this one... thanx for the info

--

say, you think people can walk across/through such a 'field' w/o gettin electrecuted ?

Share this post


Link to post
Share on other sites

MIT team experimentally demonstrates wireless power transfer, potentially useful for powering laptops, cell phones without cords

Franklin Hadley, Institute for Soldier Nanotechnologies

Imagine a future in which wireless power transfer is feasible: cell phones, household robots, mp3 players, laptop computers and other portable electronics capable of charging themselves without ever being plugged in, freeing us from that final, ubiquitous power wire. Some of these devices might not even need their bulky batteries to operate.

A team from MIT's Department of Physics, Department of Electrical Engineering and Computer Science, and Institute for Soldier Nanotechnologies (ISN) has experimentally demonstrated an important step toward accomplishing this vision of the future.

The team members are Andre Kurs, Aristeidis Karalis, Robert Moffatt, Prof. Peter Fisher, and Prof. John Joannopoulos (Francis Wright Davis Chair and director of ISN), led by Prof. Marin Soljacic.

Realizing their recent theoretical prediction, they were able to light a 60W light bulb from a power source seven feet (more than two meters) away; there was no physical connection between the source and the appliance. The MIT team refers to its concept as "WiTricity" (as in wireless electricity). The work will be reported in the June 7 issue of Science Express, the advance online publication of the journal Science.

Late-night beeps

The story starts one late night a few years ago, with Soljacic (pronounced Soul-ya-cheech) standing in his pajamas, staring at his cell phone on the kitchen counter. "It was probably the sixth time that month that I was awakened by my cell phone beeping to let me know that I had forgotten to charge it. It occurred to me that it would be so great if the thing took care of its own charging." To make this possible, one would have to have a way to transmit power wirelessly, so Soljacic started thinking about which physical phenomena could help make this wish a reality.

Radiation methods

Various methods of transmitting power wirelessly have been known for centuries. Perhaps the best known example is electromagnetic radiation, such as radio waves. While such radiation is excellent for wireless transmission of information, it is not feasible to use it for power transmission. Since radiation spreads in all directions, a vast majority of power would end up being wasted into free space.

One can envision using directed electromagnetic radiation, such as lasers, but this is not very practical and can even be dangerous. It requires an uninterrupted line of sight between the source and the device, as well as a sophisticated tracking mechanism when the device is mobile.

The key: Magnetically coupled resonance

In contrast, WiTricity is based on using coupled resonant objects. Two resonant objects of the same resonant frequency tend to exchange energy efficiently, while interacting weakly with extraneous off-resonant objects. A child on a swing is a good example of this. A swing is a type of mechanical resonance, so only when the child pumps her legs at the natural frequency of the swing is she able to impart substantial energy.

Another example involves acoustic resonances: Imagine a room with 100 identical wine glasses, each filled with wine up to a different level, so they all have different resonant frequencies. If an opera singer sings a sufficiently loud single note inside the room, a glass of the corresponding frequency might accumulate sufficient energy to even explode, while not influencing the other glasses. In any system of coupled resonators there often exists a so-called "strongly coupled" regime of operation. If one ensures to operate in that regime in a given system, the energy transfer can be very efficient.

While these considerations are universal, applying to all kinds of resonances (e.g., acoustic, mechanical, electromagnetic, etc.), the MIT team focused on one particular type: magnetically coupled resonators. The team explored a system of two electromagnetic resonators coupled mostly through their magnetic fields; they were able to identify the strongly coupled regime in this system, even when the distance between them was several times larger than the sizes of the resonant objects. This way, efficient power transfer was enabled.

Magnetic coupling is particularly suitable for everyday applications because most common materials interact only very weakly with magnetic fields, so interactions with extraneous environmental objects are suppressed even further. "The fact that magnetic fields interact so weakly with biological organisms is also important for safety considerations," Kurs, a graduate student in physics, points out.

The investigated design consists of two copper coils, each a self-resonant system. One of the coils, attached to the power source, is the sending unit. Instead of irradiating the environment with electromagnetic waves, it fills the space around it with a non-radiative magnetic field oscillating at MHz frequencies. The non-radiative field mediates the power exchange with the other coil (the receiving unit), which is specially designed to resonate with the field. The resonant nature of the process ensures the strong interaction between the sending unit and the receiving unit, while the interaction with the rest of the environment is weak.

Moffatt, an MIT undergraduate in physics, explains: "The crucial advantage of using the non-radiative field lies in the fact that most of the power not picked up by the receiving coil remains bound to the vicinity of the sending unit, instead of being radiated into the environment and lost." With such a design, power transfer has a limited range, and the range would be shorter for smaller-size receivers.

Still, for laptop-sized coils, power levels more than sufficient to run a laptop can be transferred over room-sized distances nearly omni-directionally and efficiently, irrespective of the geometry of the surrounding space, even when environmental objects completely obstruct the line-of-sight between the two coils. Fisher points out: "As long as the laptop is in a room equipped with a source of such wireless power, it would charge automatically, without having to be plugged in. In fact, it would not even need a battery to operate inside of such a room." In the long run, this could reduce our society's dependence on batteries, which are currently heavy and expensive.

At first glance, such a power transfer is reminiscent of relatively commonplace magnetic induction, such as is used in power transformers, which contain coils that transmit power to each other over very short distances. An electric current running in a sending coil induces another current in a receiving coil. The two coils are very close, but they do not touch. However, this behavior changes dramatically when the distance between the coils is increased. As Karalis, a graduate student in electrical engineering and computer science, points out, "Here is where the magic of the resonant coupling comes about. The usual non-resonant magnetic induction would be almost 1 million times less efficient in this particular system."

Old physics, new demand

WiTricity is rooted in such well-known laws of physics that it makes one wonder why no one thought of it before. "In the past, there was no great demand for such a system, so people did not have a strong motivation to look into it," points out Joannopoulos, adding, "Over the past several years, portable electronic devices, such as laptops, cell phones, iPods and even household robots have become widespread, all of which require batteries that need to be recharged often."

As for what the future holds, Soljacic adds, "Once, when my son was about three years old, we visited his grandparents' house. They had a 20-year-old phone and my son picked up the handset, asking, 'Dad, why is this phone attached with a cord to the wall?' That is the mindset of a child growing up in a wireless world. My best response was, 'It is strange and awkward, isn't it? Hopefully, we will be getting rid of some more wires, and also batteries, soon.'"

This work was funded by the Army Research Office (Institute for Soldier Nanotechnologies), National Science Foundation and the Department of Energy.

Source

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this  

×